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Abstract

A simplifying macroscopic constitutive law for ferroelectric and ferroelastic hysteresis e�ects of piezoceramics is

presented. After summarizing the uniaxial formulation motivated elsewhere (Kamlah, M., Tsakmakis, C., 1999. Int. J.

Solids Struct. 36, 669±695; Kamlah, M., B�ohle, U., Munz, D., Tsakmakis, Ch., 1997. Smart Structures and Materials

1997: Mathematics and Control in Smart Structures, Proceedings of SPIE, vol. 3039, 144±155), it is generalized to a

three-dimensional tensorial formulation. The model has been implemented in the public domain ®nite element code

PSU of Stuttgart University. The ®nite element analysis is carried out in a two-step scheme: First the purely dielectric

boundary value problem is solved for the history of the electric potential. Second, prescribing this electric potential, the

electro-mechanical stress analysis for the mechanical boundary conditions yields the electro-mechanical ®elds as, for

instance, the mechanical stress ®eld. In order to verify the capabilities of our tool, a multilayer-like actuator geometry is

analyzed. It is shown that the remanent polarization remaining after poling gives rise to a non-vanishing distribution of

the electric potential even it is reduced to zero at the electrodes. Concerning the residual stresses present after poling, a

tensile stress ®eld perpendicular to the direction of the electrodes can be found in the passive region of the actuator

where so-called poling cracks are known to occur. It is concluded that our ®nite element tool is suitable for studying the

in¯uence of geometry and material parameters on the stresses in critical regions of piezoceramic devices. Ó 2000

Elsevier Science Ltd. All rights reserved.
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1. Introduction

1.1. State of the art

For precisely controlled actuation applications with extremely short rise times, piezoceramic actuators
are the number one choice. A typical example is the reduction of harmful exhaust of combustion engines by
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injecting the fuel during each operation cycle according to an exactly prescribed time strategy. Currently,
there are strong e�orts in the industry, to realize this by means of multilayered stack acuators (for the
working principle of multilayered actuators see e.g. Bowen et al. (1980) and Uchino (1993). One of the key
problems is to meet the rigorous request for reliability which means, for example, in the car industry a
lifetime of more than 5� 108 cycles at a failure rate of less than 10ÿ5.

In order to assess the reliability of a component, one has to know, as precisely as possible, the me-
chanical stress state which in turn depends strongly on the constitutive properties of the material in
question. Because of their outstanding electro-mechanical coupling properties, lead zirconate titanate
(PZT) ceramics are widely used to exploit the piezoelectric e�ect (Newnham, 1989; Cross, 1993, 1995).
However, besides reversible piezoelectric behavior, these materials exhibit due to domain switching pro-
cesses signi®cant irreversible ferroelectric and ferroelastic hysteresis properties if loaded by electric or
mechanical loads of su�cient magnitude. (For basic properties of PZT, see the standard literature, e.g.
Fatuzzo and Merz (1967), Ja�e et al. (1971), Feldtkeller (1973) and Lines and Glass (1977). For recent
experimental investigations of the macroscopic phenomena induced by microscopic domain switching see
Cao and Evans (1993), Sch�aufele and H�ardtl (1996) and Lynch (1996).

As long as loadings are small enough, the response behavior of piezoceramics can be approximated by
the well-established classical linear piezoelectric theory. This theory has been solved analytically for many
problems and can also be found implemented in commercial ®nite element codes. (For a not- at-all rep-
resentative selection of applications of this theory in linear piezoelectric fracture mechanics see Parton and
Kudryavtsev (1988), McMeeking (1989), Pak (1992), Suo et al. (1992), Sosa (1992), Dunn (1994), Kumar
and Singh (1996), Kuna (1998) and Balke et al. (1998) However, the restriction to small signal behavior is
no longer justi®ed in general for, nowadays, applications involving complicated geometries and severe
loadings. Obviously, for a representative stress analysis, the so-called large signal hysteresis behavior has to
be taken into account.

Thus, the following problem is posed: The equilibrium condition and the Gaussian law have to be solved
in conjunction with an appropriate constitutive law relating on a macroscopic level stress and polarization
to the histories of strain and electric ®eld. Even though work on the non-linear constitutive modeling of
piezoceramics is still rare, there has been increasing activity on this ®eld in the past years. Very unlike the
traditional area of non-linear mechanical behavior of structural materials, microscopically motivated ap-
proaches to describing the constitutive behavior of piezoceramics are dominating (Hwang et al., 1995; Huo
and Jiang, 1997; Chen et al., 1997; Chen and Lynch, 1998; Michelitsch and Kreher, 1998; Steinkop�, 1999;
Hwang and McMeeking, 1998, 1999; Huber et al., 1998). Based on a more or less sound micro-physical
foundation, these approaches allow one typically to simulate macroscopic phenomena, like dielectric or
butter¯y hysteresis, however, lacking computational e�ciency at the same time. Furthermore, these models
are usually closely connected to a purely tetragonal symmetry on the microscopic scale. (Commercial PZT
ceramics are preferably in a phase state close to the so-called morphotropic phase boundary where te-
tragonal as well as rhombohedral phase fractions are present. (Ja�e et al., 1971); for a recent review see
Cross (1998). Meanwhile, Chen and Lynch (1999) have developed a non-linear ®nite element method based
on their micro-electro-mechanical model. Switching processes in a rectangular plate with an elliptic hole
under electric loadings are analyzed.

A purely phenomenological approach has ®rst been applied by Chen and coworkers (e.g. Chen and
Peercy, 1979; Chen and Montgomery, 1980; Chen and Marsden, 1981; Chen, 1980) followed by the work of
Bassiouny et al. (1988) and Bassiouny and Maugin (1989) (cf. Chapter 6 in Maugin et al., 1992). However,
we are not aware of any scienti®c work attempting to develop these approaches further to a status ready
for application in engineering reliability analyses. In a certain sense, this appears to be surprising, since
in engineering one usually deals with macroscopic structures where the macroscopic constitutive behavior
can be described probably most e�ciently by phenomenological methods. Ghandi and Hagood (1997)
motivated a model relying essentially on an energy function employing non-linear higher order terms and
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developed a corresponding ®nite element tool. However, the model is very sensible to changes of the higher
order coe�cients which are di�cult to determine and it includes no ferroelasticity.

In view of this situation, the work of Kamlah and Tsakmakis (1999), extended by Kamlah et al. (1997),
constructed by phenomenological methods a simple model for the ferroelectric and ferroelastic behavior of
PZT ceramics (see also Kamlah et al., 1998). In these papers, the model was restricted to uniaxial electro-
mechanical loadings. Meanwhile, a three-dimensional formulation of the model is available, which will be
presented in this paper (for a recent phenomenological model see also Fan et al. (1999) and Lynch (1998)).
We want to emphasize that application of phenomenological methods is by no means an excuse for physical
arbitraryness. Rather, we consider the construction of a valid phenomenological model for piezoceramics
as possible only if it is strictly motivated by ®ndings about microscopic domain processes. Of course,
another important cornerstone is given by experiments on macroscopic specimens of bulk material. In-
formation about loading conditions not available in experiments, for instance homogeneous three-
dimensional loadings, may be provided by numerical simulations with the help of microscopically based
models like those mentioned above (see the corresponding statement of Hwang and McMeeking (1999)).

We adopt the classical approach of structural engineering, ®rst to formulate mathematically a complete
theory for the large signal behavior of piezoceramics in terms of partial di�erential equations for the
balance laws and ordinary di�erential equations for the constitutive law. Then, in the second step, an
appropriate numerical solution method for the resulting boundary value problems, in structural engi-
neering usually the ®nite element method, has to be chosen, since in general an analytical solution will
hardly be possible. This approach has already been applied successfully to the coupled electro-mechanical
behavior of electrostrictive materials (Suo, 1991; Yang and Suo, 1994; Hom and Shankar, 1994, 1995, 1996;
Gong, 1995; Gong and Suo, 1996). As a substantial simpli®cation compared to our problem, the restriction
to electrostrictive behavior allows one to neglect memory e�ects in the material response. From our point
of view, no numerical methods or computer algorithms or particular software codes should be part of the
formulation of the theory. They should not enter the picture before solution tools for the mathematical
formulation of the theory are needed. (This is, at least partly, in contrast to some of the approaches found
in the literature like several of the microscopic models mentioned above.)

1.2. Scope and plan of the paper

It is the scope of this paper, to give a ®rst hand idea of the importance of ferroelectric and ferroelastic
hysteresis phenomena for the state of components made of piezoceramics. A very important aspect is the
residual stress state due to poling after sintering. These very ®rst experiences can be gained in a most
transparent way by means of a constitutive model as simple as possible, allowing to study the behavior of a
structure under the in¯uence of a very few, but typical parameters. In the case of piezoceramics, besides the
classical small signal parameters, coercive ®eld, maximum remanent polarization, coercive stress, and
maximum remanent strain are such parameters.

In view of this guide line, the present paper is organized as follows: In Section 2, we present a simple
constitutive law for the non-linearly coupled ferroelectric and ferroelastic hysteresis behavior of piezoce-
ramics. It relies on the introduction of remanent polarization and remanent strain as phenomenological
internal variables besides stress, strain, electric ®eld and polarization. The internal variables are governed
by ordinary di�erential equations and each of these evolution equations is subjected to two loading con-
ditions of di�erent nature. The ®rst one indicates the onset of changes of the remanent quantities by domain
switching, while the second one characterizes the saturation value of a remanent quantity corresponding to
a totally switched domain structure. Polarization-induced anisotropy in the piezoelectricity tensor is taken
into account; however, for simplicity, no rate e�ects are included. By means of a bilinear approximation,
the following characteristic phenomena of piezoceramics are represented: dielectric hysteresis, polariza-
tion induced piezoelectricity, butter¯y hysteresis, ferroelastic hysteresis, mechanical depolarization, ®eld
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dependent coercive stress. After summarizing the uniaxial formulation of the evolution laws given before
(Kamlah and Tsakmakis, 1999; Kamlah et al., 1997), we present a three-dimensional generalization of the
model.

In Section 3, the current state of the ®nite element implementation of the model is described. The electro-
mechanical stress analysis is carried out in a two-step procedure well established for thermomechanical
structure analyses. In the ®rst step, the purely dielectric boundary value problem for the body under
consideration is solved, yielding the history of the ®eld of the electric potential. In the second step, this
electric potential as well as the mechanical boundary conditions are prescribed, giving the electro-
mechanical solution of the histories of stress, strain, polarization, electric ®eld and the internal variables.
Obviously, this electro-mechanical stress analysis does not yield the fully coupled solution, since the me-
chanical boundary conditions have no in¯uence on the solution for the electric potential. However, it is
expected, that the in¯uence of the mechanical boundary conditions on the dielectric solution is much
weaker then the other way around (cf. Gong, 1995).

In Section 4, we demonstrate the potential of our ®nite element tool by an electro-mechanical stress
analysis of the poling process of a simpli®ed multilayer actuator geometry. In order to reduce computa-
tional expenditure, symmetry assumptions are exploited and therefore the actuator is represented by a
plane strain ®nite element model consisting of a single PZT layer between two electrodes. The model
represents the typical alternating electrode arrangement of nowadays multilayer actuator designs. It turns
out that the solution is signi®cantly dominated by some basic features of the underlying ferroelectric
constitutive law. As can be expected, a remanent polarization is present after the poling electric potential
has been brought back to zero values at the electrodes. Since the fully poled state yields a remanent po-
larization which is not divergence-free, it gives rise to a signi®cant non-zero distribution of the electric
potential within the poled ceramic, even though it is zero at the electrodes. The stress analysis is carried out
by means of a plane strain formulation. The resulting residual stress state in the structure is clearly in-
¯uenced by the existence of ferroelectric and ferroelastic hysteresis properties. In particular, after poling,
signi®cant tensile stresses normal to the electrode are found in front of the tip of the electrode, exactly
where the so-called poling cracks are known to occur.

In the following analysis which is restricted to a geometrically linear setting, all component represen-
tations of tensors are referred to a Cartesian coordinate system (summation convention). First-order
tensors (vectors) are denoted by upright letters with superscript arrows (~a, ~A) and second-order tensors
(tensors) by bold slanted letters (a, A, a). A dot between tensors indicates the contraction relative to one
index, for example, the inner product between vectors, i.e.~a �~b � aibi, the composition of two tensors, i.e.
A � Aÿ1 � I (Aÿ1: inverse of A; I : identity tensor), the inner product between tensors, i.e. A : B �
tr�A � BT� � AijBij (tr A: trace of A. BT: transpose of B), the linear mapping of a vector by a tensor, i.e.
A �~a � Aijaj. AD � Aÿ 1=3�trA�I stands for the deviator of A and Ak k � �����������

A : A
p

is the norm of the tensor
A.~ea �~a= ~ak k is the unit vector in the direction of the vector ~a ( ~ak k �

���������
~a �~a
p

: norm of ~a). The symbol 

indicates the dyadic product, e.g.~a
~b yields a second-order tensor with components aibj. � _ � � d� �=dt
denotes the time derivative of a ®eld ( ). Further mathematical de®nitions will be given where they are
needed.

2. A simple constitutive model for ferroelectric and ferroelastic piezoceramics

For a macroscopic theory of a deformable dielectric, a relation for the dependence of the electric ®eld
~E � ÿgradu and the stress tensor T on the histories of the polarization ~P and the strain tensor
S � 1=2�grad~u� �grad~u�T� is needed (u;~u: electric potential and displacement vector, respectively). In
Sections 2.1 and 2.2, we ®rst summarize our proposal for such a constitutive model, as it has been moti-
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vated in full detail for uniaxial electro-mechanical loadings in Kamlah and Tsakmakis (1999) and Kamlah
et al. (1997). Then, the evolution laws are generalized to a three-dimensional tensorial formulation.

2.1. The general structure of the model

The basic assumption of our model is to introduce the irreversible or remanent polarization ~Pi and the
irreversible or remanent strain Si as internal variables by the additive decompositions

~P � ~Pr �~Pi; �1�
S � Sr � S i �2�

of the polarization and the strain, respectively (see also Bassiouny et al., 1988). The macroscopic internal
variables ~Pi and Si must be understood as averages of the corresponding microscopic quantities, i.e. the
spontaneous polarization and the spontaneous strain of a domain. Please note that the notion of irre-
versibility is introduced here as a synonym of remanence and without explicit reference to a thermodynamic
framework.

The parts ~Pr and Sr are assumed to be reversible in the sense that they vanish if the loads ~E and T are
zero. As a simple choice, we adopt for them equations of linear piezoelectric structure:

~Pr � d : T � � �~E; �3�
Sr � Cÿ1 : T � dT �~E: �4�

�, d, and C are the (second order) tensor of dielectric permittivities, the (third order) tensor of piezoelectric
moduli, and the (fourth order) tensor of elastic moduli, respectively. In order to keep the model as simple as
possible, we neglect the in¯uence of the loading history on the anisotropy of � and C and assume isotropic
representations, where �, l, and m are the dielectric constant, shear modulus, and Poisson ratio, respectively
(I ; I: identity tensors of second and fourth order, respectively):

� � �I ; C � 2l I
�
� m

1ÿ 2m
I 
 I

�
: �5a;b�

Note, that this restriction is not essential for our approach (for similar assumptions see Hwang et al. (1995)
and related papers).

The situation is completely di�erent for the piezoelectricity tensor. The history dependence of the an-
isotropy cannot be neglected here, since the piezoelectric properties are not just modi®ed as is the case with
dielectricity and elasticity. Rather, the phenomenon of macroscopic piezoelectricity is absent in the unpoled
state, i.e., if there is no macroscopic remanent polarization~Pi. Furthermore, in the fully poled state, we have
transversely isotropic piezoelectricity, where the axis of anisotropy coincides with the direction~ePi of poling.
Therefore, we assume the representation

dkij�~Pi� �
~Pi



 



Psat

dkeiejek � d?�dij ÿ eiej�ek � d�1
2
�dki

ÿ� ÿ ekei�ej � �dkj ÿ ekej�ei

��� 	 �6�

for the piezoelectricity tensor, where the constants dk; d?; d� correspond to the well-known parameters
d33; d31; d15, respectively, and Psat is the maximum remanent polarization (dkij � �d�kij; ei � �~ePi�i is the ith
component of~ePi ).

The macroscopic remanent polarization ~Pi stands for the net polarization of a neighborhood of many
polarized domains with possibly di�erent orientations and is a measure of the extent of alignment of the
domains in a certain direction. The change of alignment of the domains causes a change of the remanent
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strain of this neighbourhood and it may be represented as uniaxial strain state in the direction of ~Pi. Thus,
we relate the remanent polarization ~Pi to the part

Sp � 3

2
Ssat

~Pi



 



Psat

~ePi 
~ePi ÿ 1

3
I

� �
�7�

of the remanent strain (Ssat is the maximum remanent polarization). Since experimental ®ndings indicate that
changes of the macroscopic strain state due to domain switching are volume preserving, we constructed Sp

such that it yields a deviatoric uniaxial strain state in the direction of ~Pi (cf. Cao and Evans, 1993). The

strain tensor (7) yields a normal strain of Ssat
~Pi



 


=Psat in the direction of poling and a transverse strain of

ÿ1=2Ssat
~Pi



 


=Psat perpendicular to it. This is the structure assumed usually for the remanent strain induced

by the remanent polarization (cf. Hwang et al., 1995; Huo and Jiang, 1997).

Domain switching can also be induced by mechanical stresses. In the case of an initially unpoled ma-
terial, the state of macroscopic polarization remains unchanged, while purely ferroelastic irreversible strain
changes occur. Therefore, we also have to consider a ferroelastic contribution Sf to the remanent strain, the
latter consisting in the general case of a superposition of both parts:

S i � Sp � Sf : �8�
The general structure of the constitutive law is shown below. The system of equations has to be closed by
evolution equations for ~Pi and Sf . See principle procedure for the construction of the evolution laws in
Section 2.3.
· additive decomposition

~P � ~Pr �~Pi;

S � Sr � Si;

· representation of reversible behavior

~Pr � d : T � � �~E;

Sr � Cÿ1 : T � dT �~E;
� isotropic dielectricity and elasticity

� � �I ; C � 2l I
�
� m

1ÿ 2m
I 
 I

�
;

� transversally isotropic piezoelectricity

dkij�~Pi� �
~Pi



 



Psat

dkeiejek � d?�dij ÿ eiej�ek � d�1
2
�dki

ÿ� ÿ ekei�ej � �dkj ÿ ekej�ei

��� 	
;

· remanent strain

S i � 3

2
Ssat

~Pi



 



Psat

~ePi 
~ePi ÿ 1

3
I

� �
� Sf :

Since according to Eq. (7), Sp is simply a function of ~Pi, the constitutive law has to be completed by
evolution laws for the remanent polarization ~Pi and for the ferroelastic part Sf of the remanent strain, the
latter allowing for deviatoric ferroelastic strain changes only. From the formulation of these evolution
equations, it will be clear that Eq. (8) does not imply that the in¯uence of electric and mechanical loads on
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Si can be decomposed additively (cf. Kamlah and Tsakmakis, 1999). As a ®rst step towards the formu-
lation of evolution equations describing the history dependence of the material adequately, we consider
uniaxial electro-mechanical loadings next.

2.2. Uniaxial electro-mechanical loadings

Let us denote the components of ~E;~P;~Pi;T;S;S i;Sp;Sf in the direction of the loading (e. g. the x3-
direction) by E; P ; P i; r; S; Si; Sp; Sf , respectively. Then, the additive decompositions (1) and (2) reads

P � P r � P i; �9�
S � Sr � Si; �10�

where according to Eqs. (8) and (7)

Si � Sf � Sp � Sf � Ssat

jP ij
Psat

: �11�

From Eqs. (3)±(6) one ®nds that the reversible parts of P and S are related to the electric ®eld E and the
uniaxial stress r by

P r � d
P i

Psat

r� �E; �12�

Sr � 1

Y
r� d

P i

Psat

E; �13�

where Y � 2l �1� m� is Young's modulus and d :� dk. Note the history dependence of the piezoelectric
coe�cient via the internal variable P i.

The basis for the construction of evolution equations for the internal variables P i and Sf is given by a
total of four criteria, indicating di�erent critical and saturation states. The principle idea is as follows: Two
criteria, f p � 0 and f f � 0, indicate the onset of domain switching, being induced either electrically
(jEj � Ec) or mechanically (jrj � rc), respectively (Ec; rc: coercive ®eld and coercive stress, respectively).
Two further criteria, hp � 0 and hf � 0, indicate the saturation of remanent polarization (jP ij � Psat) and
strain (jS ij � Ssat), respectively, belonging to a fully switched domain structure. From these criteria, the
evolution equations are derived by exploiting the so-called consistency condition, thereby leading to rate-
independent laws.

Let us consider the evolution law of P i ®rst. For the motivation of the equations summarized in the
following, we refer the reader to Kamlah and Tsakmakis (1999) and Kamlah et al. (1997), once more. We
assume the existence of a range of reversible behavior in the sense that for values of the electric ®eld inside
this range, the irreversible polarization does not change:

f p�E; P i� � jE ÿ cpP ij ÿ Ec: �14�
Ec is the coercive ®eld and cp is a non-negative constant. On the other hand, the saturated state for the
remanent polarization is indicated by

hp � jP ij ÿ P̂sat�r;E; P i�; �15�
where, in general, the saturation value for the irreversible polarization may depend on the loading history
via r;E; P i. Then, the evolution law for P i can be formulated as
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_Pi �
kp

h
ohp

oP i if hp � 0 and loading;

kp
f

of p

oE else if f p � 0 and loading;

0 else:

8><>: �16�

The factors of proportionality kp
h and kp

f have to be determined by the consistency conditions �dhp=dt� � 0
and �df p=dt� � 0, respectively. For a precise mathematical formulation of the loading conditions, we in-
troduce the notations

bxe � 1; x P 0;
0; x < 0;

�
dxc � 1; x > 0

0; x6 0;

�
�17�

and

f
�
p � d

dt
f p

����
_Pi�0;

; h
�
p � d

dt
hp

����
_Pi�bf peb f

�
pekp

f
of p

oE

; �18�

yielding

_Pi � 1

�
ÿ bhped h

�
pc

�
� df pc

��
b f peb f

�
pekp

f

of p

oE
;� bhpedh

�
pc

�
� df pc

�
kp

h

ohp

oP i
: �19�

In a similar fashion, we introduce the criteria

f f�r; Sf� � jrÿ cf Sf j ÿ r̂c�E; P i�; �20�

hf�Sf ; P i� � jSf j ÿ �Ssat ÿ jSpj�; �21�
where cf is a non-negative constant. In general, the critical stress r̂c for the onset of ferroelastic changes
depends on the loading history via E; P i. The term in brackets in Eq. (21) assures that the magnitude of the
total remanent strain never exceeds its saturation value: jSij � jSp � Sf j6 Ssat for hf 6 0. With the de®nitions

f
�
f � d

dt
f f

����
_Sf�0;

h
�
f � d

dt
hf

����f
_S�bf f eb f

�
f ekf

f
of f

or

; �22�

we get

_Sf � 1

�
ÿ bhfed h

�
fc

�
� df fc

��
b f feb f

�
fekf

f

of f

or
� bhfedh

�
fc

�
� df fc

�
kf

h

ohf

oSf
�23�

for the ferroelastic strain evolution. Again, kf
h and kf

f have to be determined by consistency conditions, this
time �dhf=dt� � 0 and �df f=dt� � 0, respectively.

Sch�aufele and H�ardtl (1996) have found a linear dependence of the coercive stress on a superposed
electric ®eld, and because of this we assume

r̂c�E; P i� � rc

�
� n

E
Ec

P i

jP ij
�
; �24�

where hxi � 0 for x6 0 and hxi � x for x P 0. The constant rc is the coercive stress in the absence of an
electric ®eld, and the constant n determines the extent of the in¯uence of the electric ®eld on the e�ective
coercive stress r̂c. An appropriate assumption for P̂sat allows one to take into account the phenomenon of
mechanical depolarization. One simple choice is

P̂sat�r;E; P i� � P̂exp
sat �r;E; P i� � Psat eÿhÿrÿr̂c�E;P i�i=m; �25�

where the constant Psat is the maximum remanent polarization introduced before and m is a positive
constant governing the progress of mechanical depolarization. According to this de®nition, compressive
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stresses of su�cient magnitude lead to a gradual reduction of the remanent polarization. In this paper, we
adopt the choice

P̂sat�r;E; P i� � P̂lin
sat�r;E; P i� � �Psat ÿ Pd� 1

�
ÿ 1

m
h ÿ rÿ r̂c�E; P i�i

�
� Pd; �26�

allowing for considering a fraction Pd P 0 of the remanent polarization which will persist compressive
stresses of arbitrary magnitude.

Fig. 1 shows some typical multilinearly approximated hystereses obtained with the help of our model.
The material constants were chosen according to Table 1 approximating typical PZT ceramics very
roughly. In principle, the large signal parameters may be determined as follows: The constants Ec (onset),

Fig. 1. Multilinear approximation of some hysteresis phenomena observed in piezoceramics: (a) dielectric hysteresis (b) butter¯y

hysteresis (c) ferroelastic hysteresis and (d) mechanical depolarization.
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Psat (remanent value), cp (slope), and Ssat (remanent value) can be taken from the classical dielectric and
butter¯y hystereses, rc (onset) and cf (slope) describe the ferroelastic behavior under uniaxial compression,
Pd (remaining value) and m (slope) govern the depolarization behavior while n (onset) characterizes the
in¯uence of a superposed electric ®eld on a depolarizing mechanical compression load.

The ®rst polarization curve in the dielectric hysteresis in Fig. 1a starts at the origin and f p6 0 holds and,
likewise, hp6 0 until the coercive ®eld Ec is reached. From now on, f p�t� � 0 on account of the consistency
condition and irreversible poling takes place. For P i � Psat, a second kink is observed and afterwards P
experiences reversible changes only, since hp�t� � 0 has now to be satis®ed. Due to the isotropy assumption
for �, the slopes of the ®rst and the third periods are the same (� �). The slope of the intermediate phase of
irreversible polarization change depends additionally on cp. If the electric ®eld is reversed, we eventually
observe poling in the new direction of the electric ®eld. Finally, upon reversing the electric ®eld again, the
hysteresis loop is closed.

The butter¯y hysteresis in Fig. 1b starts from an unpoled state, and no strain is electrically induced as
long as the coercive ®eld has not been reached, since P i � 0 in that case. For values of the electric ®eld
beyond Ec, the remanent polarization grows and S changes quadratically with respect to the electric ®eld. In
the fully poled state, a linear piezoelectric range is reached, the slope of which is given by d. Unloading
yields the saturation strain Ssat. Depolarization and new polarization after reversing the electric ®eld lead
®rst to a removal and then again to a rapid increase in irreversible deformation. Finally, a second piezo-
electric range is reached.

In the ferroelastic hysteresis in Fig. 1c, we recognize a bilinear approximation with three di�erent ranges:
a ®rst range of reversible response, an intermediate phase during which ferroelastic remanent strain de-
velops, and a saturated part corresponding to the maximum remanent strain. Because of the isotropy
assumption (5b), both the slopes of the ®rst and the third parts of the mechanical response are equal to Y .
The tangent modulus of the intermediate phase of irreversible deformation depends additionally on cf .
Note, that due to a simpli®ed formulation of the saturation criterion hf in Eq. (21), the ferroelastic hys-
teresis is symmetrical with respect to the origin.

In Fig. 1d, the horizontal line represents an initial poling process. After removing the electric ®eld,
thereby reducing P to P i � Psat, an increasing compressive stress is applied, leading ®rst to linear piezo-
electric changing and for r < ÿrc to mechanical depolarization. Since a certain degree Pd of the remanent
polarization remains, there also survives some piezoelectricity. For a detailed discussion of the uniaxial
model response, we refer to Kamlah and Tsakmakis (1999) and Kamlah et al. (1997), again.

In principle, a representation of the material behavior as realistic as possible is desirable. However, a
detailed constitutive model involves a large number of material constants and functions making it hard to
identify the in¯uence of a certain parameter on the behavior of the structure under consideration. In the

Table 1

Values of the material constants used to simulate Figs. 1 and 2

Ec (kV/mm) 1.0

Psat (mC/m2) 300

d (mm/kV) 0.001

� (mC/kVm) 0.01

cp (kVm/mC) 2.0

Ssat (%) 0.2

Y (GPa) 100

rc (MPa) 50.0

cf (GPa) 5.3

m (MPa) 50

n (MPa) 30.0

Pd (mC/m2) 100
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current situation at the beginning of the scienti®c discussion about piezoceramics structures, we consider it
more instructive to apply a simple model depending only on a few signi®cant large signal parameters.

2.3. Tensorial generalization of the evolution laws

In principle, the tensorial generalization of the evolution laws is facilitated by replacing in the functions
(14), (15), (20), (21), (24), and (26), the uniaxial quantities by appropriate tensorial invariants. Then,
normality and consistency conditions lead to the di�erential equations for ~Pi and Sf .

The invariants have to be chosen such that the previous uniaxial formulation is contained as a special
case for uniaxial loadings. In this sense, it is quite straightforward to replace the absolute magnitudes in
Eqs. (14), (15), (20), and (21) by tensor norms of the corresponding rank:

f p�~E;~Pi� � ~E



 ÿ cp~Pi




ÿ Ec; �27�

hp�T;~E;~Pi� � ~Pi



 


ÿ P̂sat�T;~E;~Pi�; �28�

f f�T; ~E;~Pi;Sf� �
��
3
2

q
�T

 ÿ cfSf�D

ÿ r̂c�~E;~Pi�; �29�

hf�~Pi;Sf� �
��
2
3

q
Sf


 

ÿ Ssat

�
ÿ

��
2
3

q
Spk k

�
: �30�

The normalizing factors in Eqs. (29) and (30) were chosen for convenience. Taking the deviator in f f makes
sure that by application of the normality rule the evolution of Sf is deviatoric as demanded at the end of
Section 2.1.

Furthermore, it seems to be an obvious choice to replace the n-term in Eq. (24) by a corresponding
vectorial inner product:

r̂c�~E;~Pi� � rc

*
� n

~E

Ec

�~ePi

+
: �31�

Finally, we write instead of Eq. (26)

P̂sat�T;~E;~Pi� � �Psat ÿ Pd� 1

�
ÿ 1

m
h ÿ 3

2
~ePi � TD �~ePi ÿ r̂c�E; P i�i

�
� Pd: �32�

For a motivation of the TD term in this equation, we consider a poled state with~ePi �~e3 and ~E �~0. For the
case of a uniaxial stress state T33 acting in the x3-direction, we obtain

hÿ3
2
~ePi � TD �~ePi ÿ rc i � hÿT33 ÿ rc i; �33�

while a biaxial stress state T11 � T22 acting in the x1±x2 plane yields

hÿ3
2
~ePi � TD �~ePi ÿ rci � hT11 ÿ rci: �34�

Thus, our choice of P̂sat corresponds to the hypothesis that compressive stresses in the direction of poling as
well as tensile stresses perpendicular to the direction of poling can lead to mechanical depolarization.

For a compact formulation of the evolution equations, we now introduce the abbreviations,

F i � b f ieb f
�
ie; H i � bhiedh

�
icdf ic

� �
; i � p; f : �35�

While F � 1 means that the related f -criterion is ful®lled, indicates H � 1 that the corresponding h-
criterion is in e�ect. Then, applying normality as before, we obtain
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_~P � �1ÿ H p�F pkp
f

of p

o~E
� H pkp

h

ohp

o~Pi
; �36�

_Sf � �1ÿ H f�F fkf
f

of f

oT
� H fkf

h

ohf

oSf
; �37�

where the factors of proportionality kp
f , kp

h , kf
f , and kf

h have to be determined by the consistency conditions
�df p=dt� � 0, �dhp=dt� � 0, �df f=dt� � 0, and �dhf=dt� � 0, respectively.

According to the above formulation of the evolution law (36), ~Pi is constant, once a fully poled state is
reached, in the x1-direction for instance, and no stress is acting. However, we want to allow for a rotation of
the saturated remanent polarization vector, if additionally to the originally poling ®eld, a perpendicular
electric ®eld component, e.g. E2 6� 0, is superposed. For this purpose, we introduce the second-order
projection tensor,

Pb � I ÿ~eb 
~eb; ~b � ohp

o~Pi
�38�

with the property

ohp

o~Pi
� �Pb �~a� � 0 for arbitrary ~a: �39�

Thus, in its geometrical interpretation, Pb projects any vector on a tangent plane to the surface hp�~Pi� � 0.
We exploit this property, by adding the term Pb � �F pkp

f of p=o~E� to the right-hand side of Eq. (36), in order
to extend the model by the e�ect of the rotation of a saturated remanent polarization state. Then, the
evolution law for ~Pi can be written as

_~P
i � I
�
ÿ H p~eb 
~eb

�
� F pkp

f

of p

o~E

� �
� H pkp

h

ohp

o~Pi
: �40�

In fact, in Fig. 2, we observe that the saturated remanent polarization vector is rotated if after an initial step
of poling in the x1-direction an additional electric ®eld component in the x2-direction is superposed in
the absence of any stress. P i

2 grows at the expense of P i
1 such that at each instant, the condition

~Pi



 


 � ������������������

P i2
1 � P i2

2

p
� Psat � const is ful®lled.

Fig. 2. Rotation of a saturated remanent polarization state: After poling took place ®rst in the x1-direction until saturation, addi-

tionally an electric ®eld component in the x2-direction is superposed. It can clearly be seen that the 2-component of~Pi starts to grow at

the expense of P i
1.
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Finally, merely as an act of formal analogy, we may extend the evolution equation for Sf by a corre-
sponding projection term. With the help of the fourth-order projection tensor

P � IÿN f 
N f ; N f � ohf=oSi

ohf=oSi


 

 ; �41�

a term P:�F fkf
f of f=oT� can be added to the right-hand side of Eq. (37), yielding

_Sf � I
ÿ ÿ H fN f 
N f

�
: F fkf

f

of f

oT

� �
� H fkf

h

ohf

oSf
: �42�

However, since this extension of the evolution law for Sf lacks physical motivation, it might be disregarded.
Thus, the tensorial generalization of the evolution laws for the internal variables has been realized by

quite straightforward application of tensorial invariants. No additional material constant was introduced.
This is important because multiaxial experiments that would be needed in order to identify parameters
describing multiaxial behavior alone are not available as yet and will be very di�cult. The evolution
equations were derived from a few scalar criteria with clear physical meaning by means of normality rules
and consistency conditions. This principle procedure for the construction of the evolution laws for the
internal variables is given below.
· onset of switching processes

f p�~E;~Pi� � 0$ jEj � Ec;

f f�T; ~E;~Pi;Sf� � 0$ jrj � rc;

· fully switched domain structure

hp�T;~E;~Pi� � 0$ jP ij � Psat;

hf�~Pi;Sf� � 0$ jSij � Ssat;

· normality and consistency condition for f p � 0 and hp � 0

) _~Pi � gPi�S;~E;~Pi;Sf ; _S;
_~E� see Eq: �40�;

· normality and consistency condition for f f � 0 and hf � 0

) _Sf � gSf �S;~E;~Pi;Sf ; _S;
_~E� see Eq: �42�:

While it is attractive to arrive at fully three-dimensional evolution equations in such a simple manner, it
must not be overseen that the numerical treatment of the involved loading conditions during integration is
delicate. (For decades, this topic has given rise for ongoing discussions in the ®eld of phenomenological
modeling of plasticity, e.g. Dafalias and Popov (1976), Simo (1988)). Note, that application of the con-
sistency conditions implies that our model is rate independent.

3. Finite element implementation

In general, the system of electro-mechanical ®eld equations is given by the geometrically non-linear
mechanical momentum balances combined with the Maxwell equations (Hutter and van de Ven, 1978;
Maugin, 1988; the debate about the formulation of this general theory seems not yet to be settled). For the
technical applications we are aiming at, the essentially simpli®ed geometrically linear, quasi-electrostatic
theory of a deformable dielectric given by the balance of linear momentum together with the Gaussian law
is usually applied (Maugin, 1988; Parton and Kudryavtsev, 1988; Suo et al., 1992), see also many other of
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the publications cited in this paper. Neglecting volume charge and volume force densities, this set of
equations reads (q: mass density)

div~D � 0; �43�
divT � q�~u; �44�

where

~D � �0
~E�~P �45�

is the dielectric displacement vector. Containing much more unknowns than equations, this system has to be
closed by relations describing the properties of the material under consideration. Here, of course, we apply
the constitutive law for ferroelectric and ferroelastic hysteresis e�ects presented in Section 2.

For a particular electro-mechanical problem, the resulting systems of equations has to be solved for
boundary conditions for the electric potential, u, or surface charge density, ~D �~n, as well as for the dis-
placement, ~u, or surface force density, T �~n (~n: unit surface normal). Even though our constitutive law
represents the true behavior in a simplifying manner, such boundary value problems cannot be solved
analytically in general. Therefore, numerical methods are needed. In structural mechanics, the ®nite element
method is probably the most popular choice, as it can be applied very ¯exibly to a wide range of geometries
(for the weak formulation of the theory needed for the ®nite element formulation as well as the ®nite el-
ement formulation itself see Allik and Hughes (1970), Gaudenzi and Bathe (1995), Hom and Shankar
(1995), Gong and Suo (1996), Ghandi and Hagood (1997), Chen and Lynch (1999)).

For the ®nite element implementation of our model, we decided for the non-linear multipurpose ®nite
element code PSU, designed for scienti®c applications. This public domain code runs on UNIXUNIX-like oper-
ating systems and is provided by the Institute of Statics and Dynamics of Aerospace Structures of the
Stuttgart University. For more information see Lange (1993), L�ubbing et al. (1994), and the web page
http://www.isd.uni-stuttgart.de/arbeitsgruppen/psu-www/index.html. The source code can be downloaded
from the ftp-server ftp.isd.uni-stuttgart.de, directory: pub/psu.

For the solution of electro-mechanical boundary value problems, geometrically linear four node plane
strain and axisymmetric elements are available. The classical linear piezoelectric constitutive law is already
implemented (L�ubbing, 1997). In principle, what we had to do was to replace the existing implementation
of the linear constitutive law by an implementation of our hysteresis law.

3.1. The user de®ned material routine M_NLFERRO_EM

In this subsection, we brie¯y present the numerical integration scheme of our model and the software
package M_NLFERRO_EM for the implementation in PSU (this package is not included in the download
mentioned above). For a detailed description, see B�ohle (1999).

The constitutive model of Section 2 can be written as a system of ordinary di�erential equations with
respect to time. The factors of proportionality kp

f , kp
h , kf

f , and kf
h were calculated analytically from the

corresponding consistency conditions for the case of prescribed electric ®eld ~E and strain S. For the nu-
merical integration of the resulting system of di�erential equations, we chose a highly accurate explicit
Runge±Kutta scheme. The points of changing from one loading condition to another are identi®ed by
cutting back subincrements iteratively until the time instant of the change is identi®ed with su�cient ac-
curacy.

There are two options available for passing the material-dependent contribution to the tangent sti�ness
operator to the non-linear ®nite element solver. The ®rst one is obtained by numerical di�erentiation of the
constitutive law by symmetric di�erence quotients. As the second approximate choice, by means of the
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tensors �, C, and d according to Eqs. 5(a), (b) and (6), respectively, a tangent sti�ness operator of the
structure of linear piezoelectricity is constructed.

We are well aware that there are more e�cient and more stable integration algorithms available, as well
as there are more sophisticated realizations for the tangent sti�ness operator possible. However, our ®rst
priority is to obtain a working tool by methods as simple and transparent as possible. This is supposed to
allow us to check the gain of physical insight in the behavior of piezoceramic devices brought about by the
application of the more general constitutive law. Granted a positive result, further e�orts for optimizing the
mathematical and numerical performance of model and routine, respectively, are justi®ed.

In this paper, we realize the electro-mechanical ®nite element analysis by a two-step scheme (Fig. 3).
Since the response of our constitutive model is history dependent, the loading history has to be subdivided
in su�ciently small increments and evaluated at the resulting discrete instants tI 2 ft0; t1; . . . ; teg in order to
loose no information.

In the ®rst step, the purely dielectric boundary value problem is solved. For the given boundary con-
ditions with respect to the electric potential or the surface charge density, the Gaussian law is solved
yielding for each increment tI 2 ft0; t1; . . . ; teg of the loading history the corresponding values u�~xK ; tI� of
the electric potential at each node~xK . In this way, a purely dielectrically calculated solution ~Pi

diel�~xK ; tI� for
the remanent polarization is obtained.

Now, in the second step, the electro-mechanical stress analysis is carried out. Besides the mechanical
boundary conditions for displacement or surface force density, the electric potential history u�~xK ; tI� is
prescribed for each node~xK of the ®nite element net at each increment tI . The Gaussian law and the balance
of linear momentum are solved yielding all electro-mechanical ®elds of interest: T;S;~E;~P;~Pi;Si;Sp;Sf .

Fig. 3. Two-step scheme for the electro-mechanical analysis: the history of the ®eld of the electric potential obtained in the ®rst step is

prescribed in the second step of the electro-mechanical stress analysis.
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In this way it is assured that the modi®ed electric quantities derived from the coupled material model ful®l
the Gaussian law, too.

Obviously, not the fully coupled problem is solved, since the mechanical boundary conditions have no
in¯uence on the solution for the electric potential. However, this splitting up of the problem seems to be
justi®ed in the sense of an approximation, as it can be expected, that the coupling in the direction from the
mechanical boundary conditions towards the dielectric solution is much weaker than the other way around
(for an investigation on this question in the context of electrostrictive behavior, see Gong (1995)). Please
note, that such a two-step procedure is very common in thermomechanical analyses. Implementing the fully
coupled solution, we experienced so far convergence problems with the global Newton iteration, the reason
for which cannot yet be identi®ed.

3.2. Veri®cation of the implementation

One necessary criterion for a successful ®nite element implementation of a constitutive model is of course
that for homogenous uniaxial loadings the uniaxial response of the model must be obtained. In this sense,
we now consider uniaxial electro-mechanical loadings of a cylinder described by a single axisymmetric
element (Fig. 4). Note that in this case the ®rst dielectric step is not necessary, since the electric potential at
each of the four nodes is determined by the electric boundary conditions and thus is known a priori. For all
®nite element calculations, the set of material constants given in Table 2 was used. They were chosen such
that the behavior of a typical soft PZT (e. g. PIC 151) is represented approximately.

Fig. 4. Uniaxial electro-mechanical loading of a solid cylinder represented by a single axisymmetric ®nite element.

Table 2

Values of the material constants chosen for the ®nite element calculations

� 1:5� 10ÿ8 C/(V m)

dk 3:5� 10ÿ10 m/V

Ec 1:0� 106 V/m

rc 5:0� 107 N/m2

n 5:0� 107 N/m2

Y 8:0� 1010 N/m2

d? ÿ1:4� 10ÿ11 m/V

Psat 0:3 C/m2

Ssat 0:002 ±

m 1:5� 108 N/m2

m 0:35 ±

d� 5:2� 10ÿ10 m/V

cp 2:0� 106 V m/C

cf 5:0� 109 N/m2

Pd 0:1 C/m2
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As the ®rst example, we consider the strains induced by electric cycling in Fig. 5. On the left-hand side,
we see the common butter¯y hysteresis in poling direction, where the slope of the poled linear piezoelectric
behavior due to the inverse piezoelectric e�ect is determined by dk. On the right-hand side of Fig. 5, the
corresponding transverse strains are shown. They are negative, indicating contraction. The remanent
transverse strains after removing the electric ®eld are half of the remanent strain in the poling direction due
to the assumed deviatoric changing of the remanent strains. The slope of the linear piezoelectric range in the
transverse direction is given by d?.

We now consider electric cycling for di�erent values of a superposed mechanical stress in Fig. 6. The
solid curves represent the response for the dielectric displacement and the strain for zero mechanical stress
and thus correspond to the related curves in Figs. 1 and 5.

The case of a superposed tensile stress is represented by the dotted lines. In the dielectric hysteresis on the
left-hand side of Fig. 6, we observe an additional contribution to the dielectric displacement in the fully
poled range due to the direct piezoelectric e�ect (see the ®rst term in Eq. (12)). The strain response on the
right of Fig. 6 is signi®cantly modi®ed. First of all, we recognize an additional tensile strain due to the initial
elastic response to the stress. More interestingly, the butter¯y hysteresis exhibits only degenerated tips.

Fig. 5. Butter¯y hysteresis in poling direction (left) and in direction perpendicular to poling (right).

Fig. 6. Application of a constant mechanical stress followed by electric cycling ± left: dielectric hystereses, right: butter¯y hystereses.
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In this context note that the magnitude of the superposed stress was chosen equal to the coercive stress rc.
Thus, the e�ective value r̂c in Eq. (31) is even smaller after reversing of the electric ®eld starts, for P i

2 and E2

have opposite signs then, allowing for ferroelastic strain changes in this period. As a consequence, the
amount of remanent strain Sp

22 released during electric depolarization, is almost completely compensated by
a mechanically induced ferroelastic remanent strain Sf

22 which because of the tensile stress state, is positive,

of course. According to Eq. (30), Spk k � Sf


 

6 ��������

3=2
p

Ssat has to hold, and the sum Si
22 � Sp

22 � Sf
22 remains

basicly on a constant level, i.e. Ssat.

In the case of a superposed compressive stress, represented by the dashed lines, we observe on the left-
hand side of Fig. 6 likewise an additional contribution to the dielectric displacement in the fully poled range
due to the direct piezoelectric e�ect, being negative this time. Also, it can be seen close to corners of the
dielectric hysteresis, that reversing of the remanent polarization starts right after the electric ®eld changes
sign. This is due to the fact that the compressive stress reduces the e�ective value of P̂sat, Eq. (32), leading to
early mechanical depolarization. The butter¯y hysteresis on the right of Fig. 6 is a�ected signi®cantly,
again. Clearly, we see a superposed elastic compression strain which is constant. Once more, the di�erence
to the other curves is most obvious during the period of electric depolarization. By the same mechanism as
before, released remanent strain Sp

22 is consumed by ferroelastic strain Sf
22, which is compressive this time.

This is why S i
22 changes from �Ssat to ÿSsat and the tips of the butter¯y hysteresis are even below the initial

elastic strain. These model properties compare at least qualitatively well to experimental ®ndings of Lynch
(1996).

In Fig. 7, the simulation of mechanical depolarization processes with varying values of a superposed
electric ®eld is shown. In each case, the horizontal line starting at the origin, represents initial poling by an
electric ®eld increased to 3.0 kV/mm. Then, the electric ®eld is adjusted to a value held constant while a
strong compressive stress is applied. Positive electric ®elds are oriented in the direction of initial poling and
negative electric ®elds opposite to it. On the left-hand side of Fig. 7, we observe after a period of linear
piezoelectric changing, a kink with subsequent rapid mechanical depolarization. Positive values of the
electric ®eld stabilize the existing remanent polarization against the compressive stress and lead to delayed
onset of mechanical depolarization. On the other hand, a negative electric ®eld, even if it is not strong
enough to cause electric depolarization, leads to an early onset of mechanical depolarization. After de-

polarization is complete, meaning ~Pi



 


 � Pd, a second kink occurs. We recognize a remaining weak de-

pendence of D2 on T22 from the fact that the curves are not completely vertical, i. e. a fraction of the initial
piezoelectricity has survived. On the right hand side of Fig. 7, we see the stress±strain behavior belonging to

Fig. 7. Mechanical depolarization for di�erent values of a superposed electric ®eld. Positive electric ®elds are oriented in the direction

of initial poling, negative electric ®elds opposite to it. Left: depolarizing stress over dielectric displacement and right: stress over strain.
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the corresponding depolarization progress. Inelastic behavior starts at the same stress level as the respective
depolarization. During the following period, the remanent strain Sp

22 released as the remanent polarization
is reduced, is replaced by compressive ferroelastic remanent strain Sf

22. When the reservoir for remanent
strain is used up by ferroelastic strain, a second range of linear elastic behavior is reached.

4. Electro-mechanical analysis of a multilayer geometry

We now want to verify the bene®ts of our ®nite element tool by studying an example, simple on the one
hand but typical of practical applications on the other. In this sense, we consider the structure shown in Fig.
8, having the principle design of a multilayer actuator. The geometry has been chosen in adaption to the
literature. The dimensions L1 and L2 are assumed to be equal, as in the paper of Gong and Suo (1996). The
numerical value for L1 � 205 lm was taken from Hom and Shankar (1996). For the layer thickness
H � 57:5 lm, half of the value of Hom and Shankar (1996) was used, in order to get a not too high ratio of
the layer thickness to the lateral layer extension.

The boundary conditions applied and the ®nite element mesh can be seen in Fig. 9. Due to symmetry
conditions, the upper electrode must not deform or rotate and is only allowed to translate parallel to its
starting position. Concerning the strain state, the plane strain assumption has been employed. In order to
simulate a poling process, the electric potential Vappl�t� is prescribed as triangular loading history in the
following manner: It ®rst is increased from 0 to ÿ170 V until t1 � 100 s and then reduced to zero until

Fig. 8. Example structure for the veri®cation of our ®nite element tool: L1 � L2 � 205 lm, H � 57:5 lm. Due to symmetry properties,

only the shaded area is modeled.

Fig. 9. Boundary conditions and ®nite element mesh for the electro-mechanical analysis of the structure shown in Fig. 8. The origin of

the coordinate system is situated at the tip of the lower electrode with x1 pointing to the right and x2 to the top (see Fig. 8).
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t2 � 200 s. Thus, an electric ®eld of approximately 3 kV/mm is reached in the region between the two
electrodes, guaranteeing full poling. As we want to simulate a poling process without superposed me-
chanical load, the resultant force on the upper electrode has to vanish. Even though the mesh is re®ned
towards the tip of the lower electrode, it still will be too coarse, to resolve the details of the ®elds in this
region. But again, we want to point out that we rather want to demonstrate the basic bene®ts of our ap-
proach and do not yet have in mind to carry out detailed analyses on real structures.

4.1. Step 1: dielectric analysis

According to our two-step strategy presented in Section 3.1, we now consider the dielectric boundary
problem ®rst. From Fig. 10a and c, we see the electric potential at the instant t � t1 � 100 s of the highest
voltage and after unloading, i.e. t � t2 � 200 s, respectively. No legends are shown as we only want to give a
qualitative impression for the time being (for a quantitative result see Fig. 11). Borders between grey levels
are lines of constant u. In Fig. 10b, the vector ®eld ~Pi

diel of the purely dielectrically calculated remanent
polarization is depicted.

At time t � t1, we can distinguish three regions in Fig. 10a. First, the area next to the left border of the
model is dominated by a constant gradient of the electric potential between the two electrodes. In the region
next to the free right border, the electric potential is close to zero and no gradient is present. The middle
region is characterized by the transition between the two homogeneous regions.

In Fig. 10b, this division in three regions is also revealed by the vector plot of the remanent polarization
~Pi

diel calculated from the purely dielectric boundary value problem. The region on the left-hand side is fully

poled, i.e. ~Pi
diel




 


 � Psat. It is connected to a completely unpoled region on the right by a transition area

possessing an inhomogeneous ~Pi
diel ®eld.

Looking at the electric potential after unloading at t � t2 in Fig. 10c, we clearly observe a non-vanishing
distribution even though u is zero at both electrodes. The reason for this, at ®rst sight maybe surprising

Fig. 10. (a) Electric potential u at t � t1 � 100 s (Vappl � ÿ170 V), (b) remanent polarization~Pi
diel at t � t2 � 200 s. (c) electric potential

u at t � t2 � 200 s (Vappl � 0 V).
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result, is given by a characteristic feature of our dielectric constitutive law. As can be seen in Fig. 10b, a
non-zero remanent polarization distribution ~Pi

diel�~x� remains after unloading. Now, taking into account the
Gaussian law (43), the de®nition of the dielectric displacement (45), the additive decomposition (1), the
constitutive equation (3), and the potential relation ~E � ÿgradu for the electric ®eld, we ®nd the following
Laplace equation for the electric potential at t � t2:

Du � 1

�0 � � div~Pi
diel: �46�

Thus, the divergence of the remanent polarization distribution acts as a volume charge density (in fact, this
corresponds exactly to the macroscopic physical interpretaion of the polarization ®eld, see e.g. Landau and

Lifschitz (1967). Looking at Fig. 10b) again, we recognize that div~Pi
diel may be non-zero in the neighbor-

hood of the electrode tip, since ~Pi
diel�~x� is inhomogenous there. As a matter of fact, it is exactly this region,

where we ®nd the non-vanishing values for the electric potential after unloading in Fig. 10c.

From Fig. 11, we can get an idea of the orders of magnitude of the electric potential. In this ®gure, the
electric potential u is plotted along the bottom border line of our model. First, represented by the dotted
line, the linear dielectric solution for t � t1 is shown as reference. Note that the linear dielectric constitutive
law ~P � �~E is obtained from our model as a special case for Ec !1. Along the electrode, u � ÿ170 V as
required by the boundary conditions. Then, for x1 P 0, u decays until it reaches the value zero at the free
end on the right hand side. The linear dielectric solution for t � t2 is not plotted, since it simply vanishes
identically. For t � t1, the solution obtained with our ferroelectricity law is given by the solid curve. It is
qualitatively similar to the linear dielectric solution; however, it decays more rapidly for x1 P 0. A signif-
icant di�erence occurs for t � t2, which can be seen from the dashed line. As required by the boundary
condition, the ferroelectric solution vanishes along the electrode. Right behind the tip of the electrode at
x1 � 0, u increases rapidly to values close to 30 V which is certainly not a neglectable order of magnitude
compared to the values at the instant of highest voltage Vappl. With increasing distance from the tip, u
decreases again and ®nally is zero in the unpoled region. Since we consider a theory of a non-conducting
dielectric with in®nite resistivity, we obtain a non-vanishing distribution of the electric potential which will
persist even without external voltage and cannot be balanced out by charge ¯ow.

Fig. 11. Plot of the electric potential u along the bottom border of the model: (- - -) t � t1, linear dielectric solution, (±±) t � t1, fer-

roelectric solution and (± ± ±) t � t2, ferroelectric solution.
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4.2. Step 2: electro-mechanical stress analysis

As explained in Section 3.1, the mechanical boundary conditions for displacements and stresses enter the
picture in step 2. Besides them, the history of the electric potential calculated in step 1 is prescribed at each
node, thus representing the in¯uence of the electric boundary conditions. However, this does not mean, that
the derived electric quantities such as polarization will necessary be the same as in step 1. This is because the
complete electro-mechanically coupled constitutive law is solved in step 2, and the polarization now also
depends on mechanical quantities.

For a detailed discussion of the results, we will focus our attention on three characteristic locations in
our model, i.e. the elements 126, 91, and 19 indicated in Figs. 12 and 13. Element 126 stands for the fully
poled region, element 91 represents the electro-mechanically passive zone close to the free end and element
19 is situated near the ``hot spot'' at the electrode tip.

4.2.1. The fully poled region
From Fig. 10a, we can conclude that the electric ®eld is oriented homogeneously in the vertical direction

in the region between the two electrodes. Fig. 14 shows the corresponding components of the remanent
polarization and the dielectric displacement, respectively, plotted over the the electric ®eld in the direction
of x2. In the left ®gure, we see that poling starts, as jE2j reaches the coercive ®eld Ec. Soon, P i

2 reaches the
maximum remanent polarization Psat � 0:3 C/m2 and remains constant as the ®eld is increased further and
during most of the unloading path. However, at E2 � ÿ0:7 kV/mm, we recognize a kink and subsequent
reduction of jP i

2j. As we can conclude from the right plot of Fig. 16, compressive stresses above the coercive

Fig. 12. Vector ®eld of the remanent polarization~Pi after unloading (t � t2), calculated in the electro-mechanical step 2. See Fig. 13 for

a zoom in the neighborhood of the tip of the lower electrode. The results for the labeled elements will be discussed in detail.

Fig. 13. Zoom in the neighborhood of the electrode tip showing the vector ®eld of the remanent polarization~Pi after unloading (t � t2).

Due to the extrapolation of results from the intergration points to the nodes, the numerical value of Pi
2 is not exactly zero in front of the

tip.
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stress develop during poling, the reason for which will be discussed later. These stresses lead to partial
mechanical depolarization, and thus to the reduction observed as the electric ®eld is removed. Note that
such depolarization cannot be obtained in the ®rst purely dielectric analysis of step 1, since no interaction
between electric and mechanical ®elds is present then.

Looking at the right plot of the dielectric displacement D2 in Fig. 14, we identify the onset of poling and
saturation from the corresponding kinks as well. At ®rst sight, it might be surprising that after saturation
the magnitude of D2, is smaller than jP i

2j. The reason for this is again the presence of a compressive stress
state, which reduces the dielectric displacement by the direct piezoelectric e�ect with respect to the remanent
polarization. This e�ect over-compensates the linear dielectric contribution to D2 (see Eqs. (45), (1), and
(3)).

In the left plot of Fig. 15, we see that the remanent deformation Sp
22 representing the strain associated to

the alignment of domains behaves just as the remanent polarization. During poling, a positive strain de-
velops in the direction of poling, and is partly reduced as the mechanical depolarization takes place. The
presence of a superposed compressive stress not only a�ects the remanent strain, rather we realize that the

Fig. 14. Poling process in vertical direction: remanent polarization (left) and the dielectric displacement (right) over the electric ®eld.

Fig. 15. Normal strains in poling direction over the electric ®eld in poling direction ± Left: remanent strains induced by poling and

right: total strain.
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total strain in poling direction is signi®cantly smaller than its remanent part. This di�erence can be ex-
plained by a negative elastic strain belonging to the compressive stress.

From the left plot of Fig. 16, we observe that a signi®cant compressive stress in poling direction is built
up as the strain increases. It is caused by the passive region of the layer and will be explained later on. Since
the stresses corresponding to the same strain values are lower during unloading, the related elastic strains
are smaller as well. This di�erence of the elastic strains between loading and unloading leads to the opening
observed in the right plot of Fig. 15 at the branch of the S22±E2 hysteresis belonging to saturated remanent
strains. The S22±E2 curve shows a non-zero slope during unloading in contrast to the unpoled state. This is
caused by the inverse piezoelectric e�ect induced by the poling process: In the poled state, there exists a
linear coupling between the electric ®eld and the deformation.

Fig. 17 shows the behavior in the directions perpendicular to poling. As can be expected, we see on the
left hand side that the structure contracts in the x1-direction during poling. Since the right border of our
model is stress-free, almost no stresses are built up in the x1-direction (not shown). Concerning the out-of-

Fig. 16. Normal stress in the poling direction plotted over the corresponding strain component (left), and over the poling electric ®eld

(right).

Fig. 17. Strains and stresses perpendicular to the poling direction ± left: transverse strains in the x1-direction and right: out-of-plane

normal stresses.
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plane-direction, the situation is just the other way around. Due to the plane strain assumption, no strains
occur in the x3-direction. This constraint causes severe tensile stresses in the out-of-plane direction, as the
contraction due to poling occurring in both the x1- and x3-directions has to be compensated completely by
tensile mechanical strains in the x3-direction.

4.2.2. The electro-mechanically passive region
As Fig. 12 clearly shows, the region between the tip of the lower electrode and the free border on the

right remains completely unpoled. From Figs. 10 and 11, we conclude that due to the con®guration of the
electrodes the electric potential stays in this region at low values even at the instant t � t1 of highest voltage
Vappl. In fact, in the left plot of Fig. 18 we see that at element 91 labeled in Fig. 12, the vertical electric ®eld is
orders of magnitude smaller than in the poled region. Because of this, we observe simply a linear dielectric
response without hysteresis and remanent polarization. No electro-mechanical coupling is induced and this
portion of the actuator remains electro-mechanically passive.

However, even though the electric loads are small, this does not mean that no hysteresis behavior occurs
at all. Rather, we recognize in the right plot of Fig. 18 that ferroelastic processes occur, the reason for which
will be discussed now. During poling, the region between the two electrodes elongates as a macroscopic
polarization vector is built up. On the other hand, due to symmetry conditions, we have the constraint that
the upper electrode must not deform or rotate. Only a translation parallel to its original position is allowed
(see the beginning of Section 4, and Fig. 9). Because of this constraint, elongation of the poled region takes
place exactly by the same amount as the passive region is forced to stretch. In the passive region, stresses are
the only mechanism to cause deformation, and in fact, we clearly see in the right plot of Fig. 18 that tensile
stresses are built up in the passive region as it is stretched by the poled zone. At the beginning, the stress
response is elastic but eventually, the stresses reach a level su�cient for ferroelastic deformation, i.e.

TD


 

 � rc. The increase of the stresses due to further stretching of the passive zone is now much more
moderate. From the right plot of Fig. 15, we know that the strains S22 reach a peak value of approximately
0.16% at the instant t � t1 of maximum voltage Vappl and are then reduced linearly during unloading. Due to
the piezoelectricity induced by poling, the poled region becomes shorter as the external voltage is removed.
By the constraint mentioned above, this reduction is also imposed on the passive region, leading to the
elastic unloading process observed in the right plot of Fig. 18.

We now may return to the poled region for the time being and discuss the reason for the compressive
stresses there. As we have just seen, tensile stresses are induced in the passive region as poling makes
progress. However, we simulate a poling process without superposed mechanical load and thus the resultant

Fig. 18. Electro-mechanically passive region: dielectrically linear (left) but mechanically ferroelastic behavior (right).
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force on the upper electrode was taken as zero. Therefore, the only way to maintain equilibrium is the
development of compressive stresses in the poled region such that the resultant vertical forces in the poled
and passive zones, respectively, cancel each other.

In view of these ®ndings, we are in a position to discuss the right plot of Fig. 16. As soon as the coercive
®eld is overcome, poling starts causing tensile stresses in the passive region. Thus the compressive stresses
observed in Fig. 16 are induced by the mechanism explained above. As the remanent polarization saturates,
the increase of the elongation of the poled region slows down and, consequently, so do the compressive
stresses. As the electric ®eld is removed, we have piezoelectric shortening of the poled region leading to
elastic unloading of the passive zone. This in turn gives rise to the nearly linear reduction of the compressive
stresses seen in Fig. 16.

4.2.3. The neighborhood of the electrode tip
The behavior in the poled and passive regions have more or less the character of uniaxial processes in the

x2-direction. From Figs. 12 and 13, it can be suspected that the processes near the electrode tip are of
multiaxial nature and thus are quite di�cult to interpret. This can clearly be con®rmed by considering the
left plot of Fig. 19, where the two components of the remanent polarization are plotted for element 19 (Fig.
13): The remanent polarization vector not only grows in magnitude, it also rotates during loading and
unloading. At the beginning, ~Pi grows proportionally form point ``O'' to ``A'' with only minor changes of

the direction. At point ``A'', the magnitude reaches its maximum value, i.e. ~Pi



 


 � Psat, and it cannot grow

further. However, loading is continued and we observe from ``A'' to ``B'', rotation of the saturated re-
manent polarization state without increase of the magnitude (cf. Section 2.3 and Fig. 2). During unloading
from ``B'' to ``C'', basically only the P i

1-component is reduced, rotating~Pi partly back to the direction of the
initial loading path ``O''±``A''.

Probably the most important question for practical applications concerns the residual stress state after
unloading induced by the poling process. In the right plot of Fig. 19, we see the normal stresses perpen-
dicular to the electrodes plotted along the lower border of our model. As can be expected, stresses are
stronger at the instant t � t1 of maximum voltage, than they are after unloading (t � t2). However, even
after removing the external electric load, we observe a signi®cant residual stress state. In the poled region, a
compressive stress of approximately ÿ35 MPa is present. More dangerous for the actuator, a tensile stress

Fig. 19. Left: Development of the components of the remanent polarization during loading (O±A±B) and unloading (B±C). Right:

Normal stresses perpendicular to the electrodes plotted along the lower border of the layer (the horizontal line represents the lower

electrode) ± (- - -): t � t1, (±±): t � t2.
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state of over 20 MPa is found in the passive region towards the free right border. This is exactly the region,
where the so-called poling cracks are known to occur. In this context please note that the tensile strength of
piezoceramics may be as low as the order of magnitude of these stresses induced by poling. Right in the
neighborhood of the tip, we have severe stress intensi®cations. We ®nd compressive stresses of up to ÿ180
MPa approaching from the poled region and tensile stresses of over 200 MPa approaching the tip from the
passive zone. However, our mesh is probably too coarse, to resolve the stress ®elds in full detail.

A comment has to made concerning the geometry considered here. In our example, we chose L2 � L1

while L2 is much larger than L1 in realistic geometries. For the passive region, the case L2 � L1 is even more
dangerous. In this case, the compressive stresses in the poled region will be reduced as the given resultant
tensile force in the passive region has to be balanced by a compressive force of equal magnitude resulting
from a much larger region. Because of being too small to oppose any constraint on the poled region, the
passive region will then be forced to stretch by nearly the full remanent poling strain. As a consequence, the
higher tensile strains will lead to higher tensile stresses. In any case, there will be stress peaks near the tip of
the electrode.

5. Conclusion

A simple phenomenological model for the ferroelectric and ferroelastic properties of piezoceramics has
been given in a three-dimensional tensorial formulation. The model has been implemented in the non-linear
®nite element code PSU. The electro-mechanical analysis is carried out in a two-step scheme known from
thermomechanics: The electric potential calculated in the ®rst dielectric step is prescribed in the second step,
where the stresses are analyzed.

As a demonstration example, the ®nite element tool is applied to a multilayer-like structure. It turns out
that the response of the structure is dominated by the presence of ferroelectric and ferroelastic large signal
hysteresis e�ects. The divergence of the remanent polarization ®eld leads to a non-zero electric potential
®eld even after removing the poling voltage at the electrodes. More importantly, a signi®cant tensile stress
state remains after poling in the passive region between the electrode tip and the free border of the actuator.
Even if, after poling, the actuator is operated in the small signal regime with small stress changes, the fact
that they are superposed on the residual stress state will increase the danger of accelerated fatigue. Because
of this, multilayer actuators are usually run under a superposed compressive load to avoid tensile stresses.
In our example, this compressive load should be approximately ÿ20 MPa. Such a compressive load may
lead to mechanical depolarization with the consequence of reduced performance, even if we consider a
realistic geometry with the poled region being much larger than the passive one (L2 � L1).

The ®nite element tool present here needs further improvement with respect to several aspects. Mean-
while, the fully coupled solution of the electro-mechanical problem has been realized (Kamlah and B�ohle,
2000). The saturation criterion for the remanent strains can be re®ned in the sense that the di�erent sat-
uration levels for compressive and tensile deformation states are distinguished (cf. Fett et al., 1998).
Furthermore, the dielectricity tensor � and the elasticty tensor C can be formulated by transversally iso-
tropic representations with the remanent polarization as the axis of anisotropy. Nevertheless, we consider
our ®nite element tool as appropriate for analysing the in¯uence of ferroelectric and ferroelastic hysteresis
e�ects on piezoceramic devices. In particular, the e�ect of variations of geometry and material parameters
can be studied.

Acknowledgements

The support by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

M. Kamlah, U. B�ohle / International Journal of Solids and Structures 38 (2001) 605±633 631



References

Bassiouny, E., Ghaleb, A.F., Maugin, G.A., 1988. Thermomechanical formulation for coupled electromechanical hysteresis e�ects ± I.

Basic equations, II. Poling of ceramics. Int. J. Engng. Sci. 26, 1279±1306.

Bassiouny, E., Maugin, G.A., 1989. Thermomechanical formulation for coupled electromechanical hysteresis e�ects ± III. Parameter

identi®cation, IV. Combined electromechanical loading. Int. J. Engng. Sci. 27, 975±1000.

Balke, H., Drescher, J., Kemmer, G., 1998. Investigation of mechanical strain energy release rate as a fracture criterion for piezoelectric

ceramics. Int. J. Fracture 89, 59±64.

B�ohle, U., 1999. Ph�anomenologische Modellierung und Finite-Elemente-Simulationen von nichtlinearen elektromechanischen

Vorg�angen in ferroelektrischen Materialien. Wissenschaftliche Berichte, vol. FZKA 6247, Forschungszentrum Karlsruhe,

Karlsruhe.

Allik, H., Hughes, T.J.R., 1970. Finite element method for piezoelectric vibration. Int. J. Num. Meth. Engng. 2, 151±157.

Bowen, L.J., Shrout, T., Schulze, W.A., Biggers, J.W., 1980. Piezoelectric properties of internally electroded PZT multilayers.

Ferroelectrics 27, 42±48.

Cao, H., Evans, A.G., 1993. Nonlinear deformation of ferroelectric ceramics. J. Am. Ceram. Soc. 76, 890±896.

Chen, P.J., 1980. Three dimensional dynamic electromechanical constitutive relations for ferroelectric materials. Int. J. Solids Struct.

16, 1059±1067.

Chen, X., Fang, D.N., Hwang, K.C., 1997. Micromechanics simulation of ferroelectric polarization switching. Acta Mater. 45, 3181±

3189.

Chen, W., Lynch, C.S., 1998. A micro-electro-mechanical model for polarization switching of ferroelectric materials. Acta Mater. 46,

5303±5311.

Chen, W., Lynch, C.S., 1999. Finite element analysis of cracks in ferroelectric ceramic materials. Engng. Fract. Mech. 64, 539±562.

Chen, P.J., Marsden, M.M. 1981. One dimensional polar responses of the electrooptic ceramic PLZT 7/65/35 due to domain switching.

Acta Mech. 41, 255±264.

Chen, P.J., Montgomery, S.T., 1980. A macroscopic theory for the existence of the hysteresis and butter¯y loops in ferroelectricity.

Ferroelectrics 23, 199±208.

Chen, P.J., Peercy, P.S., 1979. One dimensional dynamic electromechanical constitutive relations of ferroelectric materials. Acta Mech.

31, 231±241.

Cross, L.E., 1993. Ferroelectric ceramics: tailoring properties for speci®c applications. In: Setter, N., Colla, E.L. (Eds.), Ferroelectric

Ceramics: Tutorial Reviews, Theory, Processing, and Applications. Birkh�auser, Basel, pp. 1±86.

Cross, L.E., 1995. Ferroelectric materials for electromechanical transducer aplications. Jpn. J. Appl. Phys. 34, 2525±2532.

Cross, L.E., 1998. Recent developments in piezoelectric ferroelectric materials and composites. In: Tomlinson, G.R., Bullough, W.A.

(Eds.), Proceedings of the Fourth European Conference on Smart Structures and Materials. IOP Publishing, pp. 89±97.

Dafalias, Y.F., Popov, E.P., 1976. Plastic internal variables formalism of cyclic plasticity. J. Appl. Mech. 43, 645±651.

Dunn, M., 1994. The e�ect of crack face boundary conditions on the fracture mechanics of piezoelectric solids. Engng. Fract. Mech.

48, 25±39.

Fan, J., Stoll, W.A., Lynch, C.S., 1999. Nonlinear constitutive behavior of soft and hard PZT: experiments and modeling. Acta Mater.

47, 4415±4425.

Fatuzzo, E., Merz, W.J., 1967. Ferroelectricity. North-Holland, Amsterdam..

Feldtkeller, E., 1973. Dielektrische und magnetische Materialeigenschaften, vols. I and II, Bibliographisches Institut, Mannhein et al.

Fett, Th., Munz, D., Thun, G., 1998. Nonsymmetric deformation behavior of lead zirconate titanate determined in bending tests.

J. Am. Ceram. Soc. 81, 269±272.

Gaudenzi, P., Bathe, K.-J., 1995. An iterative ®nite element procedure for the analysis of piezoelectric continua. J. Intelligent Mater.

Syst. Struct. 6, 266±273.

Ghandi, K., Hagood, N.W., 1997. A hybrid ®nite element model for phase transition in nonlinear electro-mechanically coupled

material. In: Varadan, V.V., Chandra, J. (Eds.), Smart Structures and Materials 1997: Mathematics and Control in Smart

Structure. Proceedings of SPIE, vol. 3039, pp. 121±140.

Gong, X., 1995. Stresses near the end of an internal electrode in multilayer electrostrictive ceramic actuators. Mat. Res. Soc. Symp.

Proc. 360, 83±88.

Gong, X., Suo, Z., 1996. Reliability of ceramic multilayer actuators: a nonlinear ®nite element simulation. J. Mech. Phys. Solids 44,

751±769.

Hom, C.L., Shankar, N., 1994. A fully coupled constitutive model for electrostrictive ceramic materials. J. Intelligent Mater. Syst.

Struct. 5, 795±801.

Hom, C.L., Shankar, N., 1995. A numerical analysis of relaxor ferroelectric multilayered actuators and 2-2 composite arrays. Smart

Mater. Struct. 4, 305±317.

Hom, C.L., Shankar, N., 1996. A ®nite element method for electrostrictive ceramic devices. Int. J. Solids Struct. 33, 1757±1779.

632 M. Kamlah, U. B�ohle / International Journal of Solids and Structures 38 (2001) 605±633



Huber, J.E., Fleck, N.A., Landis, C.M., McMeeking, R.M., 1998. Constitutive model of ferroelectrics. J. Mech. Phys. Solids 47, 1663±

1697.

Huo, Y., Jiang, Q., 1997. Modeling of domain switching in polycrystalline ferroelektric ceramics. Smart Mater. Struct. 6, 441±447.

Hutter, K., van de Ven, A.A.F., 1978. Field matter interactions in thermoelastic solids. In: Ehlers, J., Hepp, K., Kippenhahn, R.,

Weidenm�uller, H.A., Zittartz, J. Lecture Notes In Physics, vol. 88. Springer, Berlin.

Hwang, S.C., Lynch, C.S., McMeeking, R.M., 1995. Ferroelectric/ ferroelastic interactions and a polarization switching model. Acta

Metall. Mater. 43, 2073±2084.

Hwang, S.C., McMeeking, R.M., 1998. A ®nite element model of ferroelectric polycrystals. Ferroelectrics 211, 177±194.

Hwang, S.C., McMeeking, R.M., 1999. A ®nite element model of ferroelastic polycrystals. Int. J. Solids Struct. 36, 1541±1556.

Ja�e, B., Cook, W.R., Ja�e, H., 1971. Piezoelectric Ceramics. Academic Press, London.

Kamlah, M., B�ohle, U., 2000. On a non-linear ®nite element method for piezoelectric structures made of hysteretic ferroelectric

ceramics. In: Lynch, Ch.S. (Ed.), Smart Structures and Materials 2000. Active Materials: Behavior and Mechanics. Proceedings of

SPIE, vol. 3992.

Kamlah, M., B�ohle, U., Munz, D., Tsakmakis, Ch., 1997. Macroscopic description of the non-linear electro-mechanical coupling in

ferroelectrics. In: Varadan, V.V., Chandra, J. (Eds.), Smart Structures and Materials 1997: Mathematics and Control in Smart

Structures. Proceedings of SPIE, vol. 3039, pp. 144±155.

Kamlah, M., B�ohle, U., Munz, D., Tsakmakis, C., 1998. Macroscopic modeling of the non-linear electro-mechanical coupling in

ferroelectrics. In: In: Gabbert., U. (Ed.), Modelling and Control of Adaptive Mechanical Structures. Proceedings of the

EUROMECH 373 Colloquium, Fortschritt-Berichte VDI, Series 11, vol. 268. D�usseldorf, pp. 53±62.

Kamlah, M., Tsakmakis, C., 1999. Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics. Int. J.

Solids Struct. 36, 669±695.

Kumar, S., Singh, R.N., 1996. Crack propagation in piezoelectric materials under combined mechanical and electrical loadings. Acta

Mater. 44, 173±200.

Kuna, M., 1998. Finite element analyses of crack problems in piezoelectric structures. Comp. Mater. Sci. 13, 67±80.

Landau, L.D., Lifschitz, E.M., 1967. Elektrodynamik der Kontinua, Akademie Verlag, Berlin.

Lange, K. (Ed.), 1993. PSU: Prozeûsimulation in der Umformtechnik. Springer, Berlin.

Lines, M.E., Glass, A.M., 1977. Principles and Applications of Ferroelectrics and Related Materials. Clarendon Press, Oxford.

L�ubbing, Ch., Keck P., Hessenberger, K., Herrmann, M., 1994. Das PSU-Programmsystem - aktueller Stand und Anwendungen.

Numerische und experimentelle Methoden in der Statik und Dynamik, Institut f�ur Statik und Dynamik der Luft- und

Raumfahrtkonstruktionen, Stuttgart University.

L�ubbing, Ch., 1997. Zur Stabilit�at von gesta�elten Finite-Elemente Berechnungen. Berichte aus dem Institut f�ur Statik und Dynamik

der Luft- und Raumfahrtkonstruktionen, vol. 18±97. Dissertation thesis, Stuttgart University.

Lynch, C.S., 1996. The e�ect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT. Acta mater. 44, 4137±4148.

Lynch, C.S., 1998.On the development of multiaxial phenomenological constitutive laws for ferroelectric ceramics. J. Intelligent Mater.

Syst. Struct. 9, 555±563.

Maugin, G.A., 1988. Continuum Mechanics of Electromagnetic Solids. Elsevier, Amsterdam.

Maugin, G.A., Pouget, J., Drouot, R., Collet, B., 1992. Nonlinear Electromechanical Couplings. Wiley, Chichester.

McMeeking, R.M.,1989. Electrostrictive stresses near crack-like ¯aws. ZAMP 40, 615±627.

Michelitsch, Th., Kreher, W., 1998. A simple model for the nonlinear material behavior of ferroelectrics. Acta Mater. 46, 5085±5094.

Newnham, R E, 1989. Electroceramics Rep. Prog. Phys. 52, 123±156.

Pak, Y.E., 1992. Linear electro-elastic fracture mechanics of piezoelectric materials. Int. J. Fracture 54, 79±100.

Parton, V.Z., Kudryavtsev, B.A., 1988. Electromagnetoelasticity. Piezoelectrics and Electrically Conductive Solids. Gordon and

Breach, New York.

Sch�aufele, A., H�ardtl, K.H., 1996. Ferroelastic properties of lead zirconate titanate ceramics. J. Am. Ceram. Soc. 79, 2637±2640.

Simo, J.C., 1988. A framework for ®nite strain elastoplasticity based on maximum dissipation and the multiplicative decomposition:

part I. continuum formulation. Comp. Meth. Appl. Mech. Engng. 66, 199±219.

Sosa, H., 1992. On the fracture mechanics od piezoelectric solids. Int. J. Solids Struct. 29, 2613±2622.

Steinkop�, Th., 1999. Finite-element modelling of ferroic domain switching in piezoelectric ceramics. J. Eur. Ceram. Soc. 19, 1247±

1249.

Suo, Z., 1991. Mechanics concepts for failure in ferroelectric ceramics. In: Srinivasan, A.V. (Ed.), Smart Structures and Materials AD-

vol. 24. AMD-Vol. 123, ASME, New York, pp. 1±6.

Suo, Z., Kuo, C.-M., Barnett, D.M., Willis, J.R., 1992. Fracture mechanics for piezoelectric ceramics. J. Mech. Phys. Solids 40,

739±765.

Uchino, K., 1993. Ceramic actuators: principles and applications. MRS Bulletin, April issue, pp. 42±48.

Yang, W., Suo, Z., 1994. Cracking in ceramic actuators caused by electrostriction. J. Mech. Phys. Solids 42, 649±663.

M. Kamlah, U. B�ohle / International Journal of Solids and Structures 38 (2001) 605±633 633


